=/7-e/

{ -
i

14

o

TDA Progress Report 42-117

N94- 35559

May 15, 1994

The Development and Application of Composite Complexity

Models and a Relative Complexity Metric in a

Software Maintenance Environment

J. M. Hops
Radio Frequency and Microwave Subsystems Section

J. S. Sherif
Software Product Assurance Section
and
California State University, Fullerton

A great deal of effort is now being devoted to the study, analysis, prediction,
and minimization of software maintenance expected cost, long before software is
delivered to users or customers. It has been estimated that, on the average, the
effort spent on software maintenance is as costly as the effort spent on all other
software costs. Software design methods should be the starting point to aid in al-
leviating the problems of software maintenance complexity and high costs. Two
aspects of maintenance deserve attention: (1) protocols for locating and rectifying
defects, and for ensuring that no new defects are introduced in the development
phase of the software process, and (2) protocols for modification, enhancement, and
upgrading. This article focuses primarily on the second aspect, the development of
protocols to help increase the quality and reduce the costs associated with modi-
fications, enhancements, and upgrades of existing software. This study developed
parsimonious models and a relative complexity metric for complexity measurement
of software that were used to rank the modules in the system relative to one an-
other. Some success was achieved in using the models and the relative metric to
identify maintenance-prone modules.

I. Introduction
A. Project Objectives

The primary objective of this study was to determine
whether software metrics could help guide our efforts in
the development and maintenance of the real-time embed-
ded systems that we develop for NASA’s Deep Space Net-

194

work (DSN). Generally, the systems that are developed
control receivers, transmitters, exciters, and signal paths
through the communication hardware. The most common
programming language in our systems is PL/M for Intel
8080, 8086, and 80286 microprocessors; and the systems
range in size from 20,000 to 100,000 non-commented lines
of code (NCLOC). Approximately 65 percent of the fund-



CARRIER LOOP SIGNAL-TO-NOISE SPECTRAL DENSITY RATIO, P /B N, dB

50 T T T T
a5 —
40— 1
351 -
UPLINK
COMMAND OFF
30+ —
25 -
UPLINK
COMMAND ON
20+ -
m = 70 deg
fs = 1 MHz
15 =1
10+ —
5 -
0 | I ] I
20 30 40 50 60 70

TOTAL RECEIVED SIGNAL-TO-NOISE SPECTRAL
DENSITY RATIO, dB-Hz

Fig. 13. Carrler loop received signal-to-nolse spectral density
ratlo versus total recelved signal-to-nolse spectral density ratio.

0.16 T T T T T T
4
0.14 -
™
\ SIMULATION
\ (BILINEAR, IMPULSE
0.124, INVARIANT, AND STEP -1
\ INVARIANT)
% o1of \ —
£ \ UPLINK COMMAND-ON
i
E m = 70 deg
8 0.08 - fec= 32 kHz n
g Fs = 1MHz
] Rg = 2 kbits/sec
T 0061 -
=
004 —
0.02}- —
0 4 ! 1
30 35 40 45 50 55 60 65

TOTAL RECEIVED SIGNAL-TO-NOISE SPECTRAL
DENSITY RATIO, dB-Hz

Fig. 14. Comparison of theoretical and simulated tracking phase
jitter.

193



ing received in our environment is dedicated to extending
the life span of the previously developed systems; of this,
15 percent is spent on finding and fixing defects, while
85 percent is spent on adding automation features, adding
capabilities, and increasing capacity.

Our efforts have been successful in that the life spans of
our systems now range from 4 to 8 years and are increas-
ing. As support for new spacecraft becomes necessary,
these older systems are being used in new ways, thereby
increasing the importance of high-quality, defect-free, and
cost-effective enhancements to the software. Protocols and
guidance for locating and rectifying defects in the software-
sustaining environment were deemed critical, especially
with the added complications that the maintainers of the
systems are not the original developers and that there is
little or no confidence in the software documentation.

Specifically, we were looking for ways to identify which
modules should be reengineered and which modules would
need extra development and test time in order to main-
tain. The problems we face in our environment are quite
common in the industry. Software maintenance cost is
about two to four times the original development cost
[3,13,10,21]. Charette [5] emphasizes the fact that 60 to
80 percent of the total software costs are related to main-
tenance. This will likely remain so for the indefinite future
(7,11,24].

Figure 1 shows the initial cost breakdown in develop-
ing a new project (unfortunately with maintenance costs
hidden), and Fig. 2 shows the costs of software during its
life cycle, as discussed by Zelkowitz [34]. Software mainte-
nance is not what people think it is: Software maintenance
actually encompasses fixing software errors in addition to
software enhancements and adding new functions to exist-
ing systems, system conversion, training and supporting
users, and improving system performance [31-33]. Error
correction, which is often perceived as the substance of
maintenance, is only a small part of the software main-
tenance effort [8,4]. Table 1 shows the distribution of
the average time spent on various maintenance tasks for
4 years, as reported by Lientz and Swanson [19]. Note that
functional enhancement constitutes the major portion of
the time spent on software maintenance. Charette [5] dis-
cusses another reason why the cost of software is so high
and cites some statistics as reported by the Comptroller
General [6] and as shown in Table 2. It is reported that
only 2 percent of the software contracted for could work on
delivery; 3 percent could work after some rework; 45 per-
cent was delivered, but was never successfully put to use;
20 percent was used, but was either extensively reworked

or iibandoned; and 30 percent was paid for, but was never
delivered.

For the study described in this article, we took the fol-
lowing steps:

(1) Determined what the literature suggests.

(2) Developed a course of action to be tried on one of our
operational systems that would be representative of
all the others.

(3) Performed the steps and analyzed the results.

The process and results of each of these steps are de-
scribed below.

B. Suggestions from the Literature and Course
of Action

One of the earlier studies encountered pertaining to
our objectives was undertaken by Shen, Yu, Thebaut, and
Paulsen [27]. They assessed the potential usefulness of
product and process metrics in identifying components of
the system that were most likely to contain errors. Their
goal was to establish an empirical basis for the use of ob-
jective criteria in developing strategies for the allocation
of testing effort in the software-maintenance environment.
It was found that the number of unique operands, as de-
fined by Halstead [14], was the best predictor of problem
reports on modules that were reported after the initial
delivery. Additionally, simple metrics related to the num-
ber of unique operands, such as the cyclomatic complexity
(defined by McCabe [20]), also performed well. Shen et al.
concluded that these metrics are useful in finding error-
prone modules at an early stage [27].

In 1987, Kafura and Reddy [17] published the results
of their study on using software complexity metrics during
the software maintenance phase of a system. They related
seven separate metrics to the experience of maintenance
activities on medium-sized systems. Two of the results re-
ported were that the overall complexity of a system grows
with time and that the individual complexity scores of the
software modules agree well with the expert opinions of
the programmers. Their conclusion was that metrics could
form the control element in a formal maintenance method.

Harrison and Cook [15,16] discuss the decision, fre-
quently encountered by software maintenance personnel,
of whether to make an isolated change in a module or
to totally redesign and rewrite the module anew. They
developed an objective decision rule to identify modules

195



that should be rewritten rather than modified. This de-
cision rule is whether the total change in the Halstead
software science volume metric exceeds a threshold value.
This threshold value seems to be subjective since it de-
pends upon the decision maker’s risk-taking propensity
and experience and since it must be tuned for a partic-
ular environment.

Lennselius, Wohlin, and Vrana [18] discuss the possi-
bility of using complexity metrics to identify error-prone,
and thus maintenance-prone, modules. They suggest that
a module whose complexity lies at least one standard de-
viation above the acceptable mean of complexity of the
project may be considered to be a maintenance-prone
module. The authors, however, emphasize that metrics
cannot replace the decision-making process of software
managers.

Rodriguez and Tsai [23] use discriminant analysis to de-
velop a methodology to evaluate software metrics. They
suggest that when classifying units of software as either
complex or normal, more attention is usually paid to the
complex group to either redesign it or test it more thor-
oughly. Their methodology is based on the assumption of
normal distribution and homogeneity of variances of the
two groups. The authors consider 13 metrics depicting
Halstead’s software science metrics, McCabe complexity
metrics, and NCLOC metrics. They conclude that these
metrics are correlated.

Stalhane [29] discusses how to estimate the number of
defects in a software unit from various software metrics
and how to estimate the reliability of the same software.
The author also concludes that complexity increases as
the size of code increases. Stalhane asserts that misunder-
standing the specifications will increase with the specifica-
tion complexity and that complexity may be transferred
to the code and thus lead to maintenance-prone complex
code and complex modules.

Munson and Khoshgoftaar [21] employ factor analytic
techniques to reduce the dimensionality of the complexity
problem space to produce a set of reduced metrics. The re-
duced complexity metrics are subsequently combined into
a single relative complexity measure for the purpose of
comparing and classifying programs. In particular, the
relative complexity metric can be seen to represent the
complexity of a particular software module at a particular
level of system release. The authors investigate McCabe
complexity metrics, Halstead software science metrics, and
NCLOC metrics. The comparison of complexity is again
of a relative and subjective nature.

196

Binder and Poore [2] investigate the possibility of in-
cluding the number of comments in the code as a variable
in determining the quality of the code. They assert that
comments only contribute to quality when they are needed
and meaningful. The authors suggest a software quality
measure called the “LB-ratio,” which is defined as the ra-
tio of the number of operators to the sum of the number of
operands and the number of comments. The authors agree
that their experiments with the LB-ratio need additional
work and refinement since including the concept of mean-
ingful comments in the formula seems to be problematic
and subjective at best.

The following suggestions were deduced from these
sources:

(1) An estimate of errors and reliability can be deter-
mined from software product metrics [20,27,29].

(2) Software product metrics could be used to find error-
prone modules and could form the control element in
a formal software maintenance methodology [15-18].

(3) The software product metrics that may be consid-
ered include all of Halstead’s software science met-
rics, McCabe’s complexity metric [14,23,27], and
NCLOC [21].

(4) Factor analysis can be used to identify those software
measures that are highly and significantly related to
all other measures. This economy of description will
facilitate the analysis of software complexity [21].

(5) Comments in the code contribute to the quality of
software [2].

We therefore took the following actions:

(1) Determined the Halstead software science, McCabe
complexity, NCLOC, and LB-ratio from sequential
releases of a representative software system.

(2) Performed factor analysis on the metrics from the
software modules to determine the unique dimen-
sions represented by the metrics.

(3) Proposed a model to calculate a relative metric.

(4) Determined if this metric can identify maintenance-
prone modules in the software by using the mean-
plus-one standard deviation as the relative metric
cut-off value.



Il. Method, Analysis, and Results
A. Representative System and Metrics Collection

1. Nature of Software. We analyzed the source
program in the very long baseline interferometry (VLBI)
receiver controller (VRC) software system by using factor
analysis for 16 software measures. The source program s
a real-time embedded system in the receiver-exciter sub-
system of NASA’s DSN. It serves as a communication in-
terface to VLBI subsystems and configures and monitors
the status of the narrow-channel bandwidth VLBI receiver
assembly. Three releases of the system software were an-
alyzed: OP-B (222 modules), OP-C (224 modules), and a
draft version of OP-D (235 modules). These were used as
a representative maintenance project in this study. The
source code for these three releases was originally written
in PL/M but was later converted to C using the PLC86
conversion program (from Micro-Processor Services).

2. Software Metrics and Measures. Software met-
rics are quantitative measures of certain characteristics of
a development project that can be valuable management
and engineering tools. Software metrics can be used to
achieve various project-specific results, such as predicting
source-code complexity at the design phase; monitoring
and controlling software reliability and functionality; pre-
dicting cost and schedule; and identifying high-risk mod-
ules in a software project [28].

The 16 software measures that were used to analyze
the VRC software are given in Table 3. The first eight
measures belong to the Halstead software science family of
software complexity measures. Halstead [14] uses a serles
of software science equations to measure the complexity
of a program based on the lexical counts of symbols used.
Generally, the measurements are made for each module,
and the total measurements of the modules constitute the
measurement of the program. Halstead’s metrics become
available only after the coding is done, and therefore can
be of use only during the testing and maintenance phases.
Although Halstead’s metrics are useful in determining the
complexity of programs, their weaknesses are that they
do not measure control flow complexity and have little
predictive value.

Measures 9 and 10, i.e., VG and V Gy, belong to Mc-
Cabe and were adapted from the mathematical concepts
of graph theory. McCabe cyclomatic complexity metric
VG, is a measure of the maximum number of linearly in-
dependent circuits in a program control graph. The pri-
mary purpose of this metric is to identify software modules
that will be difficult to test or maintain, as explained by

McCabe [20]. The value of the McCabe metric is avail-
able only after the detailed design is done. Although the
McCabe metric is very useful for measuring control flow
complexity, its weakness is that it is not sensitive to pro-
gram size; for example, if programs of different sizes are
composed exclusively of sequential statements, then they
may have the same cyclomatic number.

Measures 11-15 deal with the size of the program or
the number of lines. Although many researchers do not
find this measure as appealing, Boehm (3] points out that
no other metric has a clear advantage over NCLOC as
a metric. It is easy to measure, is conceptually familiar
to software developers, and is used in most productivity
databases and cost estimation models.

Measure 16, the LB-ratio, is defined by Binder and
Poore [2] as the ratio of the number of operators to the
sum of the number of operands and the number of com-
ments. It appears to capture the idea of distinguishing
between meaningful comments in the code and just com-
ments in general. The weakness of this metric 1s its re-
liance on defining the number of meaningful comments,
which seems to be more subjective than quantitative.

B. Analysis of Data, Models, and Validation

The 16 software measures of the three releases of the
VRC code, OP-B, OP-C, and draft OP-D, were analyzed
using factor analysis, correlation, analysis of variance, and
regression analysis. Table 4 shows the number of modules
and the mean value per module for each of the 16 measures.
Figures 3-5 show the correlation matrix of the 16 mea-
sures for the three releases. The data show a high degree
of correlation. Except for the LB-ratio measure, the re-
maining 15 measures are highly correlated. It can be seen
that the Halstead volume metric (V'), the McCabe cyclo-
matic complexity metric (VG1), and the NCLOC metric
are highly and significantly correlated, while the LB-ratio
metric is not. These results agree with those of other re-
searchers, such as Ramamurthy and Melton [22], Gill and
Kemerer [12], Samadzadeh and Nandakumar [25], Basili
and Hutchins [1], Evangelist [9], and Kafura and Reddy
[17].

The factor analysis matrix is shown in Table 5. All
measures except the LB-ratio are loaded on factor 1, and
thus there is no cross-loading. This is a desired result,
since cross-loading on many factors makes the interpre-
tation of the result ambiguous. The analysis of variance
of the three sets of releases did not show any significant
difference at the level of significance of 0.05. This means
that, on the average, the values of, say, the McCabe cyclo-
matic complexity metric (VG;) of the three releases are

197



not significantly different at alpha of 5 percent. The same
is also true for the other 15 measures.

Regression analysis had been used to develop models
of relationships of the most interrelated measures. These
are the Halstead volume metric (V'), the McCabe cyclo-
matic metric (VG ), and the non-commented lines of code
(NCLOC) metric, as discussed next.

1. Factor Analysis Discussion. Three releases of
software were analyzed by factor analysis to show the ex-
istence of meaningful relationships among known software
complexity measures. The analysis shows the number of
factors where software complexity measures tend to load
high or low, and also the percentage of the variability ex-
plained by each factor. This research also shows the matrix
of correlation summarizing the relationships among the 16
software complexity measures for each release.

Factor analysis of the three releases of software had
shown that the first 15 measures of complexity are closely
related to some measure of similarity and are consequently
all interrelated. However, the 16th complexity measure
(LB-ratio) does not seem to be typical of the other 15
measures, and thus it is unlike the rest of the data set.
The 3 releases show 2 factors that concisely state the pat-
tern of relationships within the 16 measures. However,
measures 1-15 load most strongly on the first factor with
explained variability of 90 to 91 percent, while the sec-
ond factor displays less interesting patterns with loading
of 9 to 10 percent. Factor analysis had also shown that
three complexity measures, the McCabe cyclomatic com-
plexity metric (VGy), the Halstead volume metric (V),
and (NCLOC), are highly and strongly related. There-
fore, in order to achieve an economy of description, these
three measures are considered to give a strong similarity
and representation of all the 15 measures.

The correlation matrix for each release of the software
also shows that the first 15 complexity measures are re-
lated, while the LB-ratio measure is not related or inter-
related to any of the other 15 measures.

Analysis of variance does not show any significant dif-
ference between the three releases at the level of signif-
icance of 5 percent. This means that as the software
evolves through its releases, the interrelationships between
the complexity measures seem to be preserved. However,
we should note that without normalization to size, adding
on to a program will make a more complex program. This
seems to agree with the findings of other researchers, as

198

discussed by Valett and McGarry [30], Harrison and Cook
[15], and Schneidewind [26].

Since factor analysis techniques showed that the first
15 software measures are closely related to some measure
of similarity, and since 3 of these measures, the McCabe
cyclomatic complexity metric (V G1), the Halstead volume
metric (V'), and the NCLOC metric, are highly and signifi-
cantly related, they are considered to give a strong similar-
ity and representation of all 15 measures. This economy of
description made it appealing to develop a set of parsimo-
nious models for software complexity measurements using
data from the three software releases. The five composite
models together with their coefficients of determination
(R?) are shown in Table 6.

Statistical analysis, model back testing, and model test-
ing with independent segments of software are used for
validation of the composite models and ascertaining their
degree of accuracy. The developed models had shown a
high degree of accuracy in predicting software complexity,
and thus they can serve as a baseline for other software
projects in identifying software modules with high com-
plexity (maintenance prone), so that actions can be taken
before their release to users.

2. Back Testing of Models. The five composite
complexity models shown in Table 6 were checked with
actual data from the three releases, OP-B, OP-C, and
OP-D. Table 7 and Fig. 6 show the actual average values
of the dependent variables (V) and values predicted by
the first three models. Table 8 and Fig. 7 show the ac-
tual average values of (V') and values predicted by models
4 and 5. It can be seen that the difference in predicting
(VGy) by the first three composite models ranges from 3.2
to 10.6 percent below the actual average value of (VG)),
as calculated by the McCabe cyclomatic complexity met-
ric. Also, the difference in predicting (V') by models 4 and
5 ranges from 1.2 to 1.3 percent above the actual average
value of (V), as calculated by Halstead’s volume metric.

3. Testing the Five Composite Models by Exter-
nal Check. The five composite complexity models were
tested against four independent segments of software with
characteristics as shown in Table 9. A sample calculation
of actual average values of (V' G,) and values predicted by
model 1 for the four segments of software is shown in Ta-
ble 10. The summary of the actual grand average values
of (VGy) and (V') and their values, as predicted by models
1, 2, and 3 and models 4 and 5, respectively, for the four
segments of software, is shown in Tables 11 and 12 and



Figs. 8 and 9. It can be seen that the difference in predict-
ing (VG,) by the first three composite models ranges from
17.3 percent below to 0.7 percent above the actual aver-
age value of (VG1). Also, the difference in predicting (V)
by models 4 and 5 is 9.7 percent above the actual average
value of (V) for the four segments of software.

C. Parsimonious Model and Relative Complexity

Since the five complexity models developed in this
study show direct relationships between (VG,) and (V)
and also (NCLOC), we chose the third model,

<VG1> = 0.786 + 0.0013(V) + 0.0976(NCLOC)

as a representative model for estimating the value of
(VG,), given the measured values of (V) and (NCLOC).

1. Development of the Relative Complexity
Metric. We propose to capture the total complexity of
a program based on its control flow complexity, the lex-
ical counts of symbols used, and the program size. In
essence, a complexity metric that accounts for a program
total complexity due to volume and control flow and nor-
malized by the number of lines of code would present a
relative complexity metric that is more useful to consider
for detecting maintenance-prone programs. The relative
complexity metric (RCM) will be derived for each module
from the measured value of (V'), the estimated value of
(VG,) from model 3, and normalized by the module lines
of code. The RCM for a module is

<VG;>+V
(RCM); = ( NCLOC )1

2. Analysis of the Three Releases Using the Rel-
ative Complexity Metric. The RCM was used to an-
alyze the modules of the three releases, as shown in Ta-
ble 13. Note that, as reported by Kafura and Reddy [17],

the RCM has grown with each release, from a 2799 total
in"0P-B to a 3470 total in the draft of OP-D.

Using the criterion of the mean relative complexity
value plus one standard deviation as a cut-off value for
acceptable modules, we can identify those modules that
can be considered as outliers, or maintenance-prone mod-
ules. Results for the three releases are given in Table 14.

In order to determine whether the modules above the
cut-off value were more at risk to be modified for enhance-
ment or fixes than modules below the cut-off value, the
transitions between the releases were examined. The re-
sults appear in Table 15. Of the 33 modules over the
cut-off value of RCM in OP-B, 40 percent were actually
modified in order to implement OP-C. Of the 36 modules
in OP-C over OP-C’s RCM cut-off value, 50 percent were
actually modified to implement the draft version of OP-D.

Although the cut-off value seems to evenly divide the
modules that were actually modified, the modules over the
cut-off value for each release were more likely to be changed
than the modules below the cut-off value. The RCM was,
therefore, able to identify maintenance-prone modules.

Ill. Discussion and Conclusion

Given that a metric that measures software complexity
should prove to be a useful predictor of software mainte-
nance costs, it is recommended that modules that show a
high order of complexity within a release be looked upon as
modules with a propensity to become maintenance prone
after release and delivery to users. It is imperative that
a maintenance-prone module be improved, enhanced, or
simplified into two or more modules before final delivery.
The composite complexity models and the relative com-
plexity metric developed in this study can be considered
as a baseline for comparison with other projects and may
serve as a set point for simplifying and reducing complex-
ity of developed software.

Acknowledgments

The authors would like to express their sincere thanks to Dr. Harry Detweiler,
Manager, Dr. William J. Hurd, Deputy Manager, and Paul A. Willis, Supervi-
sor, Radio Frequency and Microwave Subsystems Section; Dr. Robert C. Taus-
worthe, Chief Technologist, Information Systems Division; and Dr. Donald S. Re-
mer, Telecommunications and Data Acquisition Planning, for comments and sug-

gestions that greatly improved this article.

199



200

References

[1] V.R. Basili and D. H. Hutchins, “An Empirical Study of a Synthetic Complexity
Family,” JEEE Transactions on Sofiware Engineering, vol. 9, no. 6, pp. 664-672,
November 1983.

(2] L. H. Binder and J. H. Poore, “Field Experiments With Local Software Quality
Metrics,” Software Practice and Ezperience, vol. 20, no. 7, pp. 631-647, July
1990.

(3] B. Boehm, Software Engineering Economics, Englewood Cliffs, New Jersey:
Prentice Hall, 1981.

[4] B. Boehm and P. Papaccio, “Understanding and Controlling Software Costs,”
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1462-1477,
October 1988.

[6] R. N. Charette, Software Engineering Environment, New York: McGraw-Hill,
Inc., 1986.

[6] Comptroller General, Contracting for Computer Software Development, General
Accounting Office Report, FGMSD-80-4, GAO, 1979.

[7) B. Curtis, S. Sheppard, P. Milliman, M. Borst, and T. Love, “Measuring the
Psychological Complexity of Software Maintenance Tasks With the Halstead and
McCabe Metrics,” IEEE Transactions on Software Engineering, vol. 5, pp. 96—
104, March 1979.

[8] S. Dekleva, “Software Maintenance: Any News Besides the Name,” The Software
Practitioner, vol. 3, no. 3, pp. 5-8, March 1993.

[9] W. M. Evangelist, “Software Complexity Metric Sensitivity to Program Structure
Rules,” Journal of Systems and Software, vol. 3, no. 3, pp. 231-243, March 1983.

(10] R. E. Fairley, Software Engineering Concepts, New York: McGraw-Hill, Inc.,
1985.

[11] V. R. Gibson and J. A. Senn, “System Structure and Software Maintenance
Performance,” Communications ACM, vol. 32, no. 3, pp. 347-358, March 1989.

[12] G. K. Gill and C. F. Kemerer, “Cyclomatic Complexity Density and Software
Maintenance Productivity,” IEEE Transactions on Software Engineering, vol. 17,
no. 12, pp. 1284-1288, December 1991.

[13] R. L. Glass, Software Maintenance Handbook, Englewood Cliffs, New Jersey:
Prentice Hall, Inc., 1981.

[14] M. Halstead, Elements of Software Science, New York: Elsevier North Holland,
Inc., 1977.

[15] W. Harrison and C. Cook, “A Micro/Macro Measure of Software Complexity,”
The Journal of Systems and Sofiware, vol. 7, no. 2, pp. 213-219, August 1987.

[16] W. Harrison and C. Cook, Insights on Improving The Maintenance Process
Through Software Measurements, Naval Ocean Systems Center Report TR 90-4,
N66001-87-D-0136, 1990.

(17} D. Kafura and G. R. Reddy, “The Use of Software Complexity Metrics in Soft-

ware Maintenance,” IEEFE Transaclions on Soflware Engineering, vol. 13, no. 13,
pp. 335-343, March 1987.



(18]

[19]
(20]

21]

(22]

[29)

(30)

(33]

34]

B. Lennselius, C. Wohlin, and C. Vrana, “Software Metrics: Fault Content Es-
timation and Software Process Control,” Microprocessors and Microsystems,
vol. 11, no. 7, pp. 365-375, September 1987.

B. P. Lientz and E. B. Swanson, Software Maintenance Management, Reading,
Massachusetts: Addison-Wesley, 1990.

T. J. McCabe, “A Complexity Measure,” IEEFE Transactions on Software Engi-
neering, vol. 2, no. 4, pp. 308-320, December 1976.

J. C. Munson and T. M. Khoshgoftaar, “Application of a Relative Complexity
Metric for Software Project Management,” Journal of Systems and Software,
vol. 12, no. 3, pp. 283-291, July 1990.

B. Ramamurthy and A. Melton, “A Synthesis of Software Sciences Measures and
the Cyclomatic Number,” IEEE Transactions on Software Engineering, vol. 14,
no. 8, pp. 1116-1121, August 1988.

V. Rodriguez and W. T. Tsai, “Evaluation of Software Metrics Using Discrimi-
nant Analysis,” Proceedings of the Eleventh Annual International Computer Soft-
ware and Applications Conference, Tokyo, Japan, pp. 245-251, October 1987.

H. D. Rombach, “A Controlled Experiment on the Impact of Software Structure
on Maintainability,” IEEE Transactions on Software Fngineering, vol. 13, no. 3,
pp- 344-354, March 1987.

M. H. Samadzadeh and K. Nandakumar, “A Study of Software Metrics,” Journal
of Systems Software, vol. 16, no. 3, pp. 229-234, November 1991,

N. F. Schneidewind, “Methodology For Validating Software Metrics,” [EEE
Transactions on Software Engineering, vol. 18, no. 5, pp. 410-422, May 1992.

V.Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying Error-Prone
Software—An Empirical Study,” IEEE Transactions on Software Engineering,
vol. 11, no. 4, pp. 317-323, April 1985.

Y. S. Sherif, E. Ng, and J. Steinbacher, “Computer Software Development: Qual-
ity Attributes, Measurements and Metrics,” Naval Research Logistics, vol. 35,
no. 1, pp. 4256-436, January 1988.

T. Stalhane, A Discussion of Software Metrics as a Means for Software Reliabil-
ity Fveluation, Report PB89-210322, U.S. Department of Commerce, National
Technical Information Service, 1988.

J. D. Valett and F. E. McGarry, “A Summary of Software Measurement Expe-
riences in the Software Engineering Laboratory,” The Journal of Systems and
Software, vol. 9, no. 2, pp. 137-148, February 1989.

I. Vessey and R. Weber, “Some Factors Affecting Program Maintenance: An
Empirical Study,” Communications ACM, vol. 26, no. 2, pp. 128-134, February
1983.

S. Wake and S. Henry, “A Model Based on Software Quality Factors Which Pre-

dicts Maintainability,” Proceedings of the Conference on Software Maintenance,
Phoenix, Arizona, pp. 382-387, October 24, 1988.

S. S. Yau and J. S. Collofello, “Some Stability Measures for Software Mainte-
nance,” IEEE Transactions on Software Engineering, vol. 6, no. 6, pp. 545-552,
November 1980.

M. V. Zelkowitz, A. C. Shaw, and J. D. Grannon, Principles of Software Eng:-
neering and Design, Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1979.

201



202

Table 1. Percentage of time spent on various maintenance tasks.

Maintenance tasks

Percentage of time spent

1977 1985 1987 1990
Enhancements 59 44 41 43
Corrections 22 15 18 16
Supporting users NA? 21 12 12
Reengineering NA NA 10
Adaptations 8 9
Documentation NA 5
Tuning NA 3
Evaluating requests NA NA NA
Other 3 2 1

2 Not applicable.

Table 2. Comptroller General statistics on
delivered software.

Quality of
software delivered

Percentage of
software delivered

Could work on delivery

Could work after some rework 3
Never successfully put to use 45
Extensively reworked 20
Useless 30
Total 100




Table 3. Software measures used to analyze the VRC software.

Measure

number Measure Measure definition

1 ni Number of unique operators

2 n2 Number of unique operands

3 N Number of total operators

4 Ny Number of total operands

5 N Length {N; + N3)

6 N Estimated length = [n(logy(n1)) + n2(logy(n2))]

7 \% Volume = (N}logy(n) = (N1 + N2)logy(ny 4 n2)

8 E Effort = V/{(2/n1)(n2/N2))

9 VG, McCabe cyclomatic complexity (number of decisions + 1)
10 VG Extended complexity (decisions + ANDs + ORs +1)
11 LOC Lines of code (includes blank and comment lines})

12 B/C Number of blank lines + number of comment lines
13 <> Number of executable semicolons

14 SP Average maximum lines between variable references
15 NCLOC Non-commented lines of code = LOC — B/C

16 L B-ratio [N1/(N2 + B/C)]

Table 4. OP-B, OP-C, and OP-D modules and the mean values of

the 16 measures.

Measure Measure OP-B (222 OP-C (224 OP-D (235
number modules) mean modules) mean  modules) mean
1 ny 12 12 13

2 Ny 12 12 15

3 Ny 70 75 87

4 Nj 42 44 52

5 N 113 119 140

6 N 103 110 126

7 \%4 704 721 844

8 E 53,781 58,198 61,715

9 VG 4 4 5
10 VGa 5 4 5
11 LOoC 73 78 83
12 B/C 43 46 49
13 <> 12 13 15
14 SP 5 5 6
15 NCLOC 30 31 34
16 L B-ratio 1 1 1

203



204

Table 5. The factor matrix for the 16 measures of OP-C, OP-B, and OP-D.

Measure OP-B OP-C OP-D
number Measure
Factor 1 Factor 2 Factor1 Factor2 Factorl Factor 2

1 ny 0.78 -0.17 0.79 —-0.12 0.78 -0.17
2 ng 0.94 —-0.02 0.94 —-0.02 0.93 -0.03
3 Ny 0.97 0.10 0.98 0.83 0.97 0.08
4 N2 0.97 0.06 0.97 0.04 0.96 -0.05
5 N 0.98 0.09 0.98 0.07 0.97 0.07
6 N 0.91 -0.01 0.96 —0.00 0.96 —-0.01
7 v 0.96 0.14 0.97 0.09 0.96 0.09
8 E 0.89 0.22 0.90 0.15 0.88 0.15

VG, 0.94 0.09 0.95 0.08 0.93 0.10
10 VG, 0.77 0.12 0.95 0.07 0.93 0.10
11 LoC 0.94 —0.25 0.96 -0.17 0.95 -0.19
12 B/C 0.61 —-0.64 0.72 —0.50 0.70 —-0.53
13 <> 0.97 0.03 0.97 0.04 0.97 0.06
14 SP 0.70 —-0.05 0.60 -0.01 0.72 0.04
15 NCLOC 0.98 0.05 0.98 0.05 0.98 0.05
16 L B-ratio —-0.03 0.83 —-0.01 0.92 —0.02 0.90
Percentage 90 10 91 9 91 9

of explained

variability

Table 6. Five composite complexity models and their coefficients

of determination.

Model

Coeflicient of

number Model determination, percent
1 <VG;> = 1.48 4+ 0.005(V) R? =96
2 <VG1> = 0.510+ 0.136{NCLOC) R? =96
3 <VG;> = 0.786 4 0.0013(V) + 0.0976(NCLOC) R? =96
4 <V> = —206+29.5(NCLOC) R? =99
5 <V>= ~2104+87(VG1) + 28.3(NCLOC) R? =99




Table 7. Summary of actual average values of (VG1) and values predicted by models 1, 2, and 3.

(V) value Delt B .
Model Release elta, ITOT percentage,

Actual, (A) Predicted, (P) (4) - () delta/(A)
1 OP-B 4.45 5.00 —-0.55 —-12.40
OP-C 4.53 5.09 -0.56 -12.40
OP-D 5.30 5.70 —0.40 —7.50
Grand average 4.76 5.26 -0.50 —10.60
2 OP-B 4.45 4.59 -0.14 -3.10
OP-C 4.53 4.86 -0.33 ~-7.30
OP-D 5.30 5.27 -0.03 0.60
Grand average 4.76 4.91 -0.15 -3.10
3 OP-B 4.45 4.62 -0.17 -3.80
OP-C 4.53 4.84 —-0.31 —-6.80
OP-D 5.30 5.30 -0.00 0.00
Grand average 4.76 4.92 -0.16 -3.40

Table 8. Summary of actual average values of (V) and values predicted by models 4 and 5.

(V) value
Model Rel Delta, Error percentage,
ode elease
Actual, (A) Predicted, (P) (4) - (P) delta/(A)
4 OP-B 704 679 +25 +3.6
OP-C 722 738 -16 —2.2
OP-D 845 826 +19 +2.2
Grand average 757 T48 +9 +1.2
5 OP-B 704 678 +26 +3.7
OP-C 722 735 -13 —-1.8
OP-D 845 826 +19 +2.2
Grand average 757 746 -10 +1.3

205



Table 9. Characteristics of four independent segments

of software.
Segment Number of Actual average value
number modules
VG 1% NCLOC

1 16 16.4 3343 102

2 16 17.9 4016 139

3 50 8.16 1823 64

4 55 11.10 2212 71

Table 10. Sample calculation of actual average values of (VGy) and values predicted
by model 1 for segments 1-4.

(V) value
Delta, Error percentage,
Model Segment
Actual, (A) Predicted, (P) (4) - (P) delta/(A)
1 1 16.40 18.19 -1.79 -10.9
2 17.90 21.56 —3.66 —-20.4
3 8.16 10.59 -2.03 —-24.4
4 11.10 12.54 —1.44 -13.0
Grand average 13.39 15.72 ~2.33 -17.3

Table 11. Summary of actual grand average values of (VG1) and values predicted by
models 1, 2, and 3 for segments 1-4.

(VG1) grand average value

Model S ; Delta, Error percentage,
ode egmen
Actual, (A) Predicted, (P) (4) —(P) delta/(A)
1 1-4 13.39 15.57 —-2.33 -17.3
1-4 13.39 13.31 +0.08 +0.6
3 1-4 13.39 13.48 -0.09 +0.7

206



Table 12. Summary of actual grand average values of (V) and values predicted by
models 4 and 5 for segments 1-4.

(VG1) grand average value

Delta, Error percentage,
Model Segment
Actual, (4) Predicted, (P) (4) - (P) delta/(A)
4 1-4 2848 2570 +278 +9.7
5 1-4 2848 2571 +277 +9.7

Table 13. Analysis of three software releases using the relative complexity metric.

Relative complexity
Total number

Release of modules Total Maximum Minimum Median Mean Sta.rlxd;.a.rd
deviation
OP-B 222 2799 45 0.4 10.9 12.6 10.0
OoP-C 224 2837 45 0.4 10.9 12.7 9.6
OP-D 235 3470 49 0.4 12.2 14.8 11.3
Table 14. Cut-off values of the three software releases.
Number of Percentage of
) Total number (RCM) modules exceeding modules over
Release of modules cut-off value (RCM) (RCM)
cut-off value cut-off value
OP-B 222 22.6 33.0 15.0
OP-C 224 22.3 36.0 16.0
OP-D 235 26.1 35.0 15.0
Table 15. Analysis of transitions between the three software releases.
Percentage of Percentage of all
T . Number of (RCM) modified modules modules over cut-off
ransition modules modified cut-off value over cut-off value that were
value actually modified
From OP-B to 13 226 46 40
OP-C
From OP-C to 38 22.3 47 50
OP-D

207



208

SPECIFICATION
10%

REQUIREMENTS
10%

INTEGRATION
TEST
20%

MODULE
TEST
25%

Fig. 1. The Initial cost breakdown In developing a new project.

MODULE TEST 8% INTEGRATION TEST 7%

)

CODE 7%

DESIGN 5%
SPECIFICATION 3% .

REQUIREMENTS 3%

MAINTENANCE
67%

Fig. 2. The cost of software during its ilfe cycle.



‘@-dO 40} Sainseaw 9| JO Xxujew uonedson ¢ ‘Big

. : : : : ‘0 §SLSO  SLO9O
: : . . 1s§°0 182870 0099°0 11980 90660  €TLL . :
: : : : (0000 10200 8T9L0  688LO O . : . ( L fiud 00
0 mwmmwo oe%_n%w ° wawo L96ECD-  66SS1°0-  LEOZO'O- LORI0O0  €T0PO0  99¥IO0  696z0'0- I18110°0  6L000°0- £5610°0 8L 99y
00000°1 99500 .
. : : . ! 10000 1000°0
‘ : : . 1000°0 10000 10000 10000 10000 X
. . . . . 10000 10000 10000 10000 . : ( : T 2r0EL 0
e _o ° %S_%wo ° Sommwo ° x%mwoo ONSS.O TEIBL'0  60SS6'0  SOSI60  S9696°0 71680 pOIS6'0  v6PLEO  €88L60  OLPIEO
99500°0- 00000 .
000" : . : : 10000 10000
000 000 000 000° 000° 000 000 0 10000 1000°0 10000  1000°0 :
. . : : 0 10000 10000 100000 10000 1000’ ) . : ‘0 6291L0
Lso 10000 oooooo_o n_:h% _%—nv.o ° 96959'0  6£S8S°0  9LESL'O  LIT6Y'0 100850  on//p'0 1622970  L6119°0  TTI9TO0  TE9E9D
090100  6£Z89°0 : .
: : . : : 10000 10000
. : : : 0 1000°0 10000 10000 1000°0 .
. 000" 000" _ 000" 1000'0 10000 10000 10000 1000 : : X AT
PO n_wh.o ° 88%_0 %8_3 ° 8Y106°0  8VLOL'0  £SST6'0  698S8°0  EOZE6'0  noggR'0  IT096'0  S69S6°C  TELS6'0  PRILE'D
£Z€10°0  88656°0 . . . o
: : A 000 10000 10000 1000
1000°0 10000 10000 100070 00 10000 10000 10000  1000°0 tooo'n n_%ﬂo 0 E%ﬂvo Qmﬁ.oo L6160 760860 £9065°0
L96LE'0- 569570  168EY°0 689950 000001  IZZE8'0  TPEIE'D  ISERY'O  9S9LE'0  6leLpn  YOSL ¥06
. . . 10000 10000  1000°¢  1000°0
10200 10000 10000  1000°0 1000°0 00 10000 10000 10000 10000 mw%%o oono_%wo 0 111160 $8268°0  SOLLE'D  €ZLSL'D
66551°0-  TL6Z6'0  969S9°0  BYI06'0 1ZTER'0  00000'1  I€SL9'0  68098°0  9658L'0  60998°0 S8
: : : ‘0 10000 10000 10000
8T9L°0 10000 10000  1000°0 10000 100070 00 10000 10000 10000 qsmo 0 o _N_%wo 0 :Lwo.% 00o1L0 YPIELD 6196
LEOZO'0-  ZEIBL'O  6ESBS'0  BPLOL'D TPEZEO  I€SL9°0 000001  6SCBL'O  STO69'0  (8L6L°0 LI6HD

1000°0 1000°0 1000°0 1000°0 1000°0 100070

688L°0  1000°0 10000  1000°0 10000 1000'0 10000 00 10000 1000 ) 1260 vI968°0  60CE6'0  6YIER0  E66VL0
LOBIO'0  60SS6'0  OLE9L'O  €SSZ6'0 ISEBP'O  68098°0  6SEBLO 000001  PSPER'O  €€Z16'0 OC99L0  ¥vL

01$§°0  1000°0 10000 10000 10000 10000 10000  1000°0 00 10000 10000 10000 10000 10000  1000'0  1000°0
EZ0Y0°'0  SOST6'0  LITGKO 69880  959.¢0 9658L°0  SZ069°0  ¥SP6R'D  00000'T  ESTS6'0 £oes 0 SI6E6'0  0S606'0  8TIS6'0  BEYBL'O  OCHYSO
1878°0  1000'0 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000  1000°0
99100 §9696°0 100850 €OZC60 610 609950 LBL6L'O  €E216'0  €SZS6'0  00000T 16.06'0 127860 £9€L6°0  9LIB6'0  €LZI60 850590
0099°0 10000 10000 100070 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 100070

696Z0°0-  LTI68°0  90LLY'O  09€BB'0 90550 598580 LT6Y9°0  9L99L°0  €S86L'0  1PLO6'0 000001 61176 EVZE6'0  €1606°0  Z8196'0  €TIZLO
1198°0 10000 10000 10000 10000 10000 10000 10000 10000  1000°0 1000°0 00 10000 10000 10000 10000
18110°0  pOIS6'0 162290  T2096'0  tri€5'0  0ST060 FUITL0  vLZZ60  SI6L6'0  LLTB6'D £11Z60 00000 | LEP66'0 108660  CEIT6'0  ¥SOOL0
90660  1000°0 10000 10000 10000 10000 10000 10000 10000 (000 O 10000 10000 00 10000 10000 10000

6L000°0-  p6bL60 L6119°0  §6956°0 €LS95°0 111160 PETIL'O  ¥T968°0 056060 E9LL6°0 £PTC6'0. LEP660 00000 1 08586°0 £90€6'0  $5089°0

ﬂu\..n.o _oo.o.o 50@.0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 10000 00 1000°0 1000°0
£56100  ¢88L60 TT9T90  TeLs6'0 LI6IS°0  88268°0  9r9iLp 60LE6’0  8ZIS6'0  9L186°0 £1606°0 10866'0 085860  00000'1 SS116'0  ZL80L°0

wnh.w.o 50@.0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 1000°0 100070 1000°0 1000°0 1000°0 1000°0 00 1000°0
BLLEO'O-  9.%16'0 TE9E9'0  p89E60 ZE08S°0  SOLLB'0  wwlgLD 6YT€8°0  BEVBL'O  (LZ16°0 I8196'0  (€IZ6'0  £90£6°0 SSI16°'0  00000°1 soTLL'O

wiﬁd ~9&6 _Rﬁd 1000'0 1000°0 1000°0 1000°0 100070 1000°0 1000°0 1000°0 10000 1000°0 1000°0 1000°0 0o
90’ zTrOcLL0 6Z91L°0  1g19.70 0650 €2LSL°0  veL950 E66YL'0  0£8bSOD 850590 €LIZL0 »500L°0  $5089°0 TLBOL'O  SOZLL'O  0000O'T

ua J0IN ds ko] o8 2071 IOA DA q A AN N IN IN 4 [£:]

-1

J07IN

ds

k- o]

o8

I0A

10A

AN

IN

209



*0-dO 10} SINSEBW 9| JO XIew uonedlI0) b big

00  vp(80  SEVLO  LSLLO 10000 11900  081L0  LpbOLO (8250 0990 €8L60  vTLLO 96880  €¥ILO0  06LL0  L6ESO
000001 790100 8612000  pl6100  OGIEQ- 9€SZ10-  OZ¥ZO'D  9%SZ00  1€Z+00 808200  ZB100°0- €p610D  €€600°0  09¥Z00  S8RIO0-  611p0°0- U]
YPLRO 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000  1000°@ 10000 10000
790100 000001  86LZSO  Z8ZS60  OI1890  BLZS6D  OCIS60  SISS60  1€L€60  BISB60  Z6ZZ60 898860  BILLEO  0T6B60  ITEO60  SOIZLO  DOTON
SCPL0 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
861700  86(ZSO 000001  OEBYO'D  €OOLEO  v860SD  1p099°0  €19S9°0  L9ZECO  6019%¥0  LZPI90  $Z20S0  L616V0  S6L6VO  €£09S0  LT8890 ds
LSLL0 10000 100070 00 10000 10000 10000 10000 (0000 10000 10000 10000 10000 10000 10000 10000
pI6100  Z8ZS6'0  OERPY9'0 0000071 16§90 002160 98160 0CZZ60  OISY80  bBIPE0  GpI96'0 104560  LOES60  SSISE'D  0BIS6'0  9TILLO 10
10000 10000 10000 10000 00 10000 (0000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Ov6LED" O1IRO0  €00LCO 116500 00000  ZELLRO  SIEIO0  BL6090  LOZvS'D  10£600  ZE$990  €BZ990  6ORLOD  €TRYOD  STIBIO £2829°0 od
11900 10000 0000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
9010 8LIS60  $860S0 00160  CEILEO 00000 961680  60C6¥0  1€ESS0  LSzz60  vSPGRO  BSLE6D  (I9€60  §SIT60  BEZ6RO  LBEvLO DO
0810 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 1000°0
0zbZ00  9E1S60  1F0990  £98160  SICI90 961680 000001 699660 650680  20Zz6'0  CCBNRO  ISEZ60  RS96R0  €LZ€60  196€80  Z0LSLO DA
LYOL0 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 100000 10000
0200 SISS60  CI6SO0  0£2Z60  BLEOYO  0CRO 699660 000001 (HLGRO  TgSZ60  LU6REO  00SZEO 999680 6RPEEO  6C6LBO  LLESLO  1DA
) . ) . : : : : ‘ L i 10000 10000 10000 10000 10000
(RZS0 10000 10000 10000 10000 10000  '0000 10000 00 10000 1000°0 . ( 0 . .
€200 IELE60  L9ZECO  O1SpR0 L9ZvSO  IEESED 650680  LL6RO 000001  89v960  BIZISO 068€6'0  6£606'0  T0ZS60  1¥SBLO  €2B¥SO 3
09,90 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000
R08Z00  8ISR60 601960  p8Ipe0 I10€C90  LBIZEO  20ZT60  IEST6O  BIXO6'0 00000 £08160  01S660 081860  SEL660  SI6060  8v699°0 A
£8L60 10000 10000 10000 100000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000
281000- 262260  LIv190  SpI960 ZES990  bSh6S80  €€88%0 116880  8ZZIS0  €08160 000001 L96Z60  6EBI6O  ST6Z60  LS¥86 0 6580 W
pZLLO 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000
Ch6100  BORB60  bZZ0SO 101560 €82990  SSLEGD  ISET60  00SZ60  O6BE6D  O1S660  L96Z60 00000 97€660  ZI866D  SBSZEO  18EOLYD N
06880 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000
CC6000  STLLEO  L616¥0  LOCS60 60BLO0  LTVE6D  RSOEBOD 999680  6E6060  ORIBED  6ERIE0  9ZE6EO 00000 - LISREO ¥LZ6'0  £09890 IN
€p1£0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000
09v200  0Z6860  S6L6YD  SSZS60  €8Y90  BBIE60  €LZE6D  68pE60  TOZS60  SEL66OD  STETEO  TZ86610 195860 00000l  LPLIEO  ¥SBOLO IN
06440 10000 10000 10000 10000 10000 10000  1000°C 10000 10000 10000 10000 10000 10000 00 10000
881000 226060 0950  08IS60 SIZ8Y0  BET68O 19680  6€6€80  IvSBLO  SI6060  LSYBE0  SBSZEO  pOLZED LPL160  00000T  €OS6LO [4: |
) . . . . . . . . . . . i . . o0
L6£50 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 J
6LIb00-  SOIZLO (78890  9Z0LL0 LZBTO0  LREWLO  Z0LSLO  LLESLO  €ZBYSO 86990  T6SSEO  IBEOLO 09890  wSBOL 0 £0S6L0 00000l :|
e JO1ON ds 1D ol 201 10A 1DA 3 A W N N IN 24 §:]

210



‘Q-dO 10} S8ANSESW g} JO XUIBW uone|alI0d G "By

00 81260  00SLO  6pLLO 10000  26C00 8910 1L690  BSISO  £289'0 68180  60RL0 08060 (610  PRVOD  6L6ZO
000001 £59000  680Z00  SIRI00  B6CEC0T  €06CI0-  6LEZ00  ISSZOD  09THO0  v89Z00  Z0SIO0  KZRIOO  €SL000  €SET00 066200 618900
81260 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
59000 000001 106690 OCI960  S67990  10Lv60  TE6E60  SBERGO  06£060  OR1L6O  0SSZE0  BOSLED  T6L960  016L60 819060 91ZZLO
00SL0 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000
680200 106690 000001  161SL0  EZECKO  ZOGKO'0  SLE6LD  66YBLO  LIVRYD  €1L8G0  €ERLO  60ZZ90  S6ZI90  €ECZ90  vS8Z90  89ZOLO
6vLLO 10000 10000 00 10000 10000 10000 10000 (0000 10000 10000 10000 10000 10000 10000 10000
9100 OC1960  161SL0 000001 LISI90  (BOOGO 100260  6ZEZ6D  (SEZRO  LYTE60  ISRE6O  BEISED  ZI8Y60  6LLY60  600E60  BHLELO
10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
BOCCCO- S62990  €26600 115190, 000001 638980  60E9SD  €0LSS0 $RKZSO 095100 906990  TvIy90  LOTSVO 068290 STUSO  IFESHO
00 10000 10000 10000 1000°0 00 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000
COGET0-  10LY60  Z06v90  (ROOKO GZS9RO 00000 €OPORO  OLVOS0  OIPZRO  (0R0K0 LZ0060  16(Z60  601Z60  9SRIED  (sBNRO  (RESLO
891L0 10000 10000 10000 10000 10000 00 10000 10000 10000 100000 10000 10000 10000 100000 10000
600 ZH6T60  S1vELD 100760 60EOSD  COPORD 00000  LOS660  TOSIFD  GvZSRO 69CORO  bOSBRO 065930 OY96B0  6ELZEO  LIEOLD
[L690 10000 10000  1000°0 (0000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000
255200 SOP60  66s3L0 626760 SOLSSO  OEKOR0  LOE660 00000  TEIES0  BLSHRO SONSRO L9880 980 608680 IELIBO  1SZOLO
5150 10000 (0000 0000 10000 10000 10000 10000 00  tooop 10000 10000 10000 10000 10000 - 1000%0
09Zh00  06E060  [1VBYO  1SEZ0 BSKZSO  OLBTRO  ORISD  ICIERO 000001  ssho  OISOBO  ZEBTE0  OvGeBO  €90V6O  ILLOLO  1SOYSO
£289°0 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 (0000 10000 10000 10000
vEOZO0  O0BIL60  €1L8SO L9266 09SI90 108060  6HIESO  BLSSHO  SERS60 000001 680260 9RO OCISED  OC9660  9LYOEO  TIESIO
68180 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000
05100 0SSZ60  CERLYO  ISSEED 906990  [Z0060  69E980  SORSKO 618080 680260 000001  SBIEE0  bLCT60  ZSOEEO  1LEBED  vOVERO
6080 100000 (0000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000
VZSI00  S06L60 602290  SEIS60 Zb1s00 166260  bORSS0  (OSSRO  ZE8Z60  9zween SHIEED 000001  O1€660  €Z8660  60T260  OLVEYO
) ’ X . . . . . - . . . —ooo‘o
98060 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 ]
£SL000 61960 67190 ISrG0 0TSO0 601Z60 06590 HZEORD  OpG6RO  OLIS6O  vL{ZED  OLE6ED 0000 PSS860  L2LZ60  8TILYO
: : A : : : : : 0 10000
L61L0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 )
€SEC00 01660 (6290  6LLv60 068290 9SBIEO  OrO6S0 608680  €£90¥60  0€966°0 25060 £79660  $SS860 00000  BICL60 126690
. : : : : : : : : 0 10000
PRFO'0 10000 10000 10000  1000C 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 .
06600- 819060  ¥S8290  600g60 SZIL90  1vBSY0  6ELTRO  IELIGO  1LLOLO  OLMO6O 1LE860  60TZ6O  LILIED IEL60 000001  86L9L0
60620 10000 10000 10000 1000°0 10000 10000 10000 10000 1000°0 000G 10000 10000 10000 10000 .
618900 912200 89000  Sbifi0  1vCSo0  LHESLO  LIG0L0  1SZ0L0  ISOMSO  116SY0  1OVERD  OLV6YO  RTOLID 126690  86LOLO 000001
e JOON  dS 10 ol o001 DA 1OA 3 A W N N IN [4:] g

-1: 8!

J010N

ds

1o

o8

201

I0A

IOA

IN

4

211



(VG+) VALUE

4.76

VA ACTUAL

5.26

4.76

4.91

4,76

[:| PREDICTED

4.92

N

A

MODEL

Fig. 6. Actual average values of (VG1) and values predicted by
models 1, 2, and 3.

- | actuaL I:l PREDICTED
7 1
ot 7
1 7

Fig. 7. Actual average values of (V) and values predicted by
models 4 and 5.

212

(VGy) VALUE

15

10

13.39

ACTUAL D PREDICTED

15.72

13.39

13.31

13.39

13.48

R

2

MODEL

Flg. 8. Actual average values of (VG,) and values predicted by
models 1, 2, and 3 for independent segments of software.

(V) VALUE

3000

2000

1000

% ACTUAL

2848

N

2570

D PREDICTED

2848

2570

AT

MODEL

, ATk

Fig. 9. Actual average values of (V) and values predicted by
models 4 and 5 for Independent segments of software.




